Antibiotic resistance 2

Antibiotic resistance 2

During 1997, an event doctors had been fearing finally occurred. In three geographically separate patients, an often deadly bacterium, Staphylococcus aureus, responded poorly to a once reliable antidote--the antibiotic vancomycin. Fortunately, in those patients, the bacteria remained susceptible to other drugs and was eradicated. But the appearance of S. aureus not readily cleared by vancomycin foreshadows trouble.
Worldwide, many strains of S. aureus are already resistant to all antibiotics except vancomycin. Emergence of forms lacking sensitivity to vancomycin signifies that variants untreatable by every known antibiotic are on their way. S. aureus, a major cause of hospital-acquired infections, has thus moved one step closer to becoming an unstoppable killer.
The looming threat of incurable S. aureus is just the latest twist in an international public health nightmare: increasing bacterial resistance to many antibiotics that once cured bacterial diseases readily. Ever since antibiotics became widely available in the 1940s, they have been hailed as miracle drugs -- magic bullets able to eliminate bacteria without doing much harm to the cells of treated individuals. Yet with each passing decade, bacteria that defy not only single but multiple antibiotics -- and therefore are extremely difficult to control -- have become increasingly common.
What is more, strains of at least three bacterial species capable of causing life-threatening illnesses (Enterococcus faecalis, Mycobacterium tuberculosis and Pseudomonas aeruginosa) already evade every antibiotic in the clinician's stockpile of more than 100 drugs. In part because of the rise in resistance to antibiotics, the death rates for some communicable diseases (such as tuberculosis) have started to rise again, after having declined in the industrial nations.
How did we end up in this worrisome, and worsening, situation? Several interacting processes are at fault. Analyses of them point to a number of actions that could help reverse the trend, if individuals, businesses and governments around the world can find the will to implement them.
One component of the solution is recognizing that bacteria are a natural, and needed, part of life. Bacteria, which are microscopic, single-cell entities, abound on inanimate surfaces and on parts of the body that make contact with the outer world, including the skin, the mucous membranes and the lining of the intestinal tract. Most live blamelessly. In fact, they often protect us from disease, because they compete with, and thus limit the proliferation of, pathogenic bacteria -- the minority of species that can multiply aggressively (into the millions) and damage tissues or otherwise cause illness. The benign competitors can be important allies in the fight against antibiotic-resistant pathogens.
People should also realize that although antibiotics are needed to control bacterial infections, they can have broad, undesirable effects on microbial ecology. That is, they can produce long-lasting change in the kinds and proportions of bacteria--and the mix of antibiotic-resistant and antibiotic-susceptible types--not only in the treated individual but also in the environment and society at large. The compounds should thus be used only when they are truly needed, and...

To view the complete essay, you be registered.