Fuel Cell
Fuel Cell
Introduction:
Ballard Power System is the world leader in developing and commercializing proton exchange membrane fuel cell power systems. At the heart of this corporation is the Ballard Fuel Cell, a propriety zero-emission engine that converts natural gas, methanol, or hydrogen fuel directly into electricity without combustion. Over the last several years, many large corporations including Daimler-Benz, Chrysler, Honda, General Motors, Nissan, Hitachi, Volkswagen, Volvo, and GPU International have invested large amounts of money into the production of the Ballard Fuel Cell in an attempt to create stationary electric power plants, and zero-emission vehicles.
History of the Fuel Cell:
The fuel cell was first developed in the 1960's by General Electric for NASA. It was considered as a definite possibility for an alternative power source for space program, but the cost and size of the fuel cell stacks were tremendous. By 1983, Geoff Ballard and a small team of physicists were able to develop the Proton Exchange Membrane (PEM) to produce nearly ten times as much energy, while being only a fraction of the size.
How the PEM Fuel Cell Works:
A fuel cell is an electrochemical device that produces electricity silently, without combustion. Hydrogen fuel, which is one of the most abundant chemicals in the universe, and oxygen from the air are electrochemically combined in the fuel cell to produce electricity. Heat and pure water vapour are the only by-products of the fuel cell.
The Ballard Fuel Cell is made up of two electrodes, the anode and the cathode, separated by a polymer membrane electrolyte. Both the anode and the cathode are coated in a thin layer of platinum catalyst. At the anode, hydrogen fuel is changed into free electrons and protons. The free electrons are sent in the form of usable electric current through an external circuit. The remaining protons are sent through the membrane electrolyte to the cathode where they combine with oxygen and the electrons from the external circuit to form pure water and heat. Fuel cells are placed into a fuel cell stack to provide the amount of energy required. Each fuel cell produces roughly 0.7 of a watt of electricity.
The Ballard Fuel Cell generates power much differently than the internal combustion engine and the storage battery, which are the two most common forms of power found in our society. The fuel cell has the advantages of both, without the problems of either.
Internal combustion engines work by burning fuel to create heat, which is then converted into mechanical energy which runs the car. This conversion of energy is extremely ineffective because a large amount of heat is lost, and energy is lost because of friction. Ballard Fuel Cells, on the other hand, convert fuel directly into electricity, making them two or three times more effective than the obsolete internal combustion engine. Fuel cells use fuel tanks very similar to the ones found on internal combustion engines, and will operate continuously as long as...
To view the complete essay, you be registered.