Hydrogen 2
Hydrogen 2
Hydrogen in it's liquid form has been used in space vehicles for years.
Hydrogen has a high combustion energy per pound relative to any other fuel,
meaning hydrogen is more efficient on a weight basis than fuels currently used in air or ground transportation. Hydrogen is the universe's most abundant element. Most of that hydrogen though, is tied up in chemical bonds. Hydrogen can exist in either a gaseous form or a liquid form. Hydrogen is The liquid form is usually used for storage while the gaseous form is used as a heat transfer, and also as a cooling agent in nuclear power plants. The name hydrogen is Greek for water former. Hydrogen was once called "inflammable air" by a British scientist names Joseph Priestly . French chemist Antoine Laurent Lavoisier then renamed it to today's name, hydrogen.
Hydrogen can be produced in many ways. Electrolysis is a common way hydrogen is produced. Electric current is passed through water which releases the lements it is made of. These elements are hydrogen and oxygen. Today's efficiency of this method is about 65 percent, however 80-85 percent are possible with more research. Another method of producing hydrogen is through chemical means. It is a scientific fact that every metal that is less noble than hydrogen will isplace hydrogen from water . Common materials used in this reaction is sodium or potassium . Sodium plus water will produce hydrogen , NaOH, and heat . Other
reactions include the "producer" reaction that was discovered in 1800 . It involves combining heat, carbon, and water. It then yields hydrogen an carbon monoxide .
Bacteria can also be a hydrogen producer. Bacteria and other microorganisms may
release hydrogen in the process of creating heavier hydrocarbons or oxygen for
assimilation . A process known as Photoconversion or photosynthesis involves
light combining with water, which produces hydrogen and oxygen .
Hydrogen can be stored in a variety of ways. Compressed gas storage and
transportation has been widely used for more than 100 years. Common materials
for storage canisters are mild steel, aluminum, and composites. Storage pressure
for hydrogen ranges from 3,000 to 10,000 P.S.I . Cooling hydrogen to below the
boiling point of -252.7� C allows storage as a cryogenic liquid without the need for pressurization . Cryogenic storage of hydrogen allows regular commercial
shipment by truck and rail. Many commercial processes such as glass
manufacturing, brazing, heat treating, and semiconductor manufacturing are served by deliveries of liquid hydrogen. Liquid hydrogen has also facilitated the U.S. space exploration program. If liquid hydrogen is suddenly subjected to a vacuum it will evaporate with a subsequent cooling of the liquid mass will cause the temperature to fall to below the freezing point of -259� C and solid hydrogen will be produced . This mixture of liquid and solid hydrogen is...
To view the complete essay, you be registered.