Mitochondria 2

Mitochondria 2

Mitochondria
Mitochondria are tiny organelles found in nearly all eukaryotic cells. They are rather large organelles ranging from 0.5�m to 10�m in length and 1�m in diameter. The mitochondria are the energy factories of the cell and are located in the cytoplasm. They are the sites of cellular respiration. The mitochondria are responsible for generating ATP from such organic fuels as simple sugars and fats in the process of cellular respiration. This doubled-membrane organelle has its own DNA and can reproduce by splitting itself.
The mitochondria are sausage-shaped structures that move, change their shape and divide. They are distinct organelles with two membranes, the inner membrane and the outer membrane. The outer membrane is smooth and limits the organelle. It is highly permeable to small solutes such as molecules and ions, but it blocks off passages of proteins and other macromolecules.
The inner membrane of the mitochondria is folded into shelf like structures called cristae. The cristae does not even allow the passage of small ions and so it maintains a closed space within the cell. The many infoldings of the cristae are responsible for providing the mitochondrion with a large surface area which enhances the productivity of respiration.
The inner membrane and outer membrane effectively divide the mitochondria into two internal compartments. The space located between the outer and inner mitochondrial membrane is called the intermembrane space. The space enclosed by the inner membrane is called the mitochondrial matrix. It is here that many of the metabolic steps of cellular respiration occur.
The intermembrane space reflects the solute composition of the cytosol, because the outer membrane is permeable to small solute molecules. it has its own small group of enzymes, because the o outer membrane is not permeable to macromolecules.
The mitochondrial matrix contains enzymes that catalyse many metabolic steps of cellular respiration. Some enzymes are actually embedded in the inner membrane.
The purpose of the mitochondria is to power the cell. These organelles take in glucose and oxygen and break them down to provide ATP (a substance that is an important store of chemical energy for cells). This process is called cellular respiration.
They perform almost the exact opposite function of the chloroplasts, which provide all the materials necessary for cellular respiration through...

To view the complete essay, you be registered.